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The Challenge: Finding Palms in Natural Forests

Figure: Detection is easy in plantations (left), but hard in natural forests (right).

Ecological & Economic Significance of Palms:
o Vital to tropical forest ecology and biodiversity.
@ Support local livelihoods and are key resources for tropical wildlife.
@ Act as bioindicators of forest health and environmental impact.
The Problem:
@ Most research focuses on plantations (ordered, sparse).

o Natural forests are chaotic with: irregular spacing, overlapping
crowns, complex backgrounds, uneven lighting.
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Our Contributions

© The PALMS Dataset
o A Large-scale UAV imagery dataset for PAIm Localization in
Multi-Scale from 21 ecologically diverse sites in western Ecuador.
e Annotated with 8,830 bounding boxes and 5,026 georeferenced
ground-truth center points for palms.
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Our Contributions

© The PALMS Dataset
o A Large-scale UAV imagery dataset for PAIm Localization in
Multi-Scale from 21 ecologically diverse sites in western Ecuador.
e Annotated with 8,830 bounding boxes and 5,026 georeferenced
ground-truth center points for palms.

@ The PRISM Pipeline
e An end-to-end efficient framework for Processing, Inference,
Segmentation, and Mapping.
e Ensures trustworthiness with interpretability via saliency maps and
confidence calibration.

© Comprehensive Validation
o Demonstrated strong generalization across four distinct reserves.
o Achieved high performance, locating palm centers with a median error
of less than 1.5 meters.
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The PALMS Dataset: Data from the Field
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@ Data collected from four reserves spanning wet to dry tropical forests.
@ Captures high variation in palm species, density, and canopy structure.
@ High-resolution orthomosaics created from thousands of UAV images.
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The PRISM Pipeline at a Glance
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Figure: Our modular pipeline: from orthomosaic to georeferenced coordinates.
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Core Components:
@ Detection: Fine-tuned models locate palms in orthomosaic patches.

@ Segmentation: Detections are used as prompts for a zero-shot
Segment Anything Model (SAM) to generate precise masks.

Mapping: Outputs are georeferenced for landscape-scale analysis.

o Interpretability: Grad-CAM and confident calibration.
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Detection Performance: Fast and Accurate

Table: Detection model performance comparison.

Model GFLOPS | Params (M) | FPS 1 Precision T Recall APso T AP75 1 mAP 1

DINO 1920.3 218.2 18.98 £ 0.95 0.7629 +0.0177  0.8494 +£0.0071  0.8169 +0.0166  0.5455 +0.0150  0.5102 + 0.0101
DDQ 1232.6 218.6 19.18+0.96  0.7825+0.0124 0.8566 = 0.0123  0.8541 +0.0129  0.6354 +0.0137  0.5736 = 0.0130
RT-DETR 2225 65.5 151.49+0.70 0.8869 +0.0230 0.7598 +0.0310  0.8416 +0.0181  0.6198 +0.0181  0.5769 + 0.0145
YOLOv8 226.7 61.6 174.92+0.86 0.87294+0.0165 0.7997 £0.0203  0.8667 + 0.0141  0.6777 +0.0137  0.6148 & 0.0128
YOLOv9 169.5 532 114.96 +£0.30  0.8763+0.0176  0.7976 + 0.0209 0.8741 +0.0109 0.6762+0.0146  0.6162 + 0.0122
YOLOv10 169.8 31.6 177.04 £1.14 0.8716 £0.0121  0.7968 + 0.0089  0.8626  0.0129  0.6794 +0.0112 0.6173 + 0.0090
YOLO11 194.4 56.8 170.40 £0.95 0.872140.0095 0.7896 £0.0127  0.8684 +0.0108  0.6677 +£0.0180  0.6115 £ 0.0109

Key Findings:
@ YOLOV10 (Selected): Best overall trade-off, achieving the highest
mAP, AP75 and inference speed with the fewest parameters.
o DDQ: Highest recall, ideal when finding all instances is prioritized.

e RT-DETR: Highest precision, but misses more palms (lower recall).
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Zero-Shot Segmentation: Generalizing Across Ecosystems

FCAT Jama-Coaque Canande Tesoro Escondido

Figure: SAM 2 provides the most robust segmentation on unseen data.

SAM 2 SAM

Mobile
SAM

We use boxes as prompts for zero-shot segmentation on new

ecosystems.
@ Original SAM: Sometimes produces incomplete masks.

@ MobileSAM: Tends to include background areas (over-segments).
@ SAM 2 (Selected): Most balanced and accurate segmentation.
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Visualizing What the Model "Sees” with Grad-CAM
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Figure: Hierarchical Feature Learning in YOLOv10 through Grad-CAM Plots.

Hierarchical Feature Learning

The analysis confirms the model learns a meaningful progression: early
layers focus on low-level edges and textures; intermediate layers integrate
spatial context; and deep layers exhibit focused activation over entire palm

crowns.
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Model Interpretability: A Step-by-

ep Guide to Calibration
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The First Fix

Post-Hoc Calibration
10 Temperature Scaling
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The Final Result

The uncalibrated model
is unreliable; its
confidence scores are
poorly correlated with
true accuracy.

LRP-based thresholding
is applied to prune the
large number of
unreliable predictions
with low confidence.

A post-hoc method,
e.g., Temperature
Scaling, is then applied
to align confidence with
accuracy.
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Counting Performance: How Well Does It Generalize?

Table: Bidirectional counting performance across

sites. @ High precision ( 90%)
" pren (ha) Counts Pred2GT GT2Pred across all sites. PRISM
Ratio Median (m) Ratio Median (m) rarely makes up palms
FCAT 21.62 471 09361 1.10 08854 077 ’
Jama-Coaque 111.93 952 0.9348 1.50 0.8151 1.14 o a
Canande 10120 1273  0.8956 0.82 0.7667 0.72 @ Recall is more variable
Tesoro Escondido 86.76 2,330 0.8981 1.09 0.9253 0.91 (77_93%) Some Sites

are harder than others.
Key Metrics:

e Pred2GT (Precision-like): Proportion
of our predictions that are correct.

e GT2Pred (Recall-like): Proportion of
real palms that we found.

@ Localization is excellent,
with a median error of
< 1.5 meters.
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Feasibility for Real-Time Analysis

Inference Time by Model and GPU
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Key Findings:

e Detection is Real-Time Ready: YOLOvV10 is fast enough (1.2-5.7s /
image) for live processing on a UAV, even with mid-range hardware.

@ Segmentation is Costly: Segmentation speed varies greatly, making it
an optional step for time-critical missions.

@ Conclusion: The core detection pipeline is efficient and stable,
meeting the requirements for field deployment.
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Conclusion and Future Work

Summary & Key Achievements

We introduced PRISM, a robust and efficient pipeline for detecting

natural objects from UAV imagery, validated on our new, large-scale
PALMS dataset. Key achievements include:

@ High accuracy and strong generalization to new environments.

@ Proven potential for real-time processing on UAVs.

@ A trustworthy design that incorporates calibration and interpretability.

Future Work:

@ Onboard deployment on UAVs for in-field validation.
e Adaptation to other ecologically critical species (e.g., pines).

@ Application to lower-resolution satellite data for scalable monitoring.
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Thank You

Questions?

Link to Code Link to Data
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https://github.com/Zippppo/PRISM
https://drive.google.com/file/d/1z-DnZUN4LOOOk6TrPZ6JuQFhSFb9WKpL/view?usp=drive_link
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