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Introduction
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Fundamentals: Optical vs. Non-Optical Sensing

Optical Sensing (Our Focus) Non-Optical Sensing
@ Principle: Detects reflected o Principle: Emits its own signal
sunlight across spectral bands [1]. (SAR) or detects heat (Thermal) [2].
@ Provides: Rich spectral and spatial o Provides: Surface structure,
detail. moisture, and temperature.

Rationale: Why This Thesis Focuses on Optical Sensing

This thesis employs optical sensing because its research questions require the rich
spectral and spatial data needed to identify species, classify crops, and monitor
ecological changes.

.

To design and implement computationally efficient, interpretable, and scalable
frameworks for unsupervised clustering, change detection, and object localization in
complex remote sensing data.

A\
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Contribution 1: S?DL for HSI Clustering

(a) PCs (b) K-Means (d) DPC (e) PGDPC (2) D-VIC

(h) SC-I (i) S-PGDPC (j) LSS (k) DSIRC (1) SRDL (m) s2DL (1) GT

Figure: Comparison of clustering results on the Salinas A dataset.

S?DL successfully integrates spatial information to produce clean, accurate clusters
that align with the ground truth for hyperspectral images (HSIs).
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Overlay images of Semi-manual labeled map and Predicted

1 score

- ]2 water

Figure: Pond dynamics in two ASGM regions.
Performance varies with mining typology.

Detection and Segmentation for RS

Contribution 2: Monitoring Small-Scale Gold Mining

E-ReCNN effectively detects land
and water changes in the Peruvian
Amazon using Sentinel-2 data,
with results varying by mining
typology.
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Contribution 3: Palm Detection in UAV Imagery

(a) Input Image (b) Layer 1 (c) Layer 4 (d) Layer 7 (e) Layer 10 (f) Layer 16 (g) Layer 19 (h) Layer 22

Figure: Hierarchical Feature Learning in YOLOvV10 through Grad-CAM Visualizations. Early
layers capture low-level edges, intermediate layers integrate spatial context, while deep layers
specialize in object-level features.

PRISM is a framework for detecting, mapping, and segmenting palm crowns in
high-resolution UAV imagery. It further integrates ecological models to analyze the
spatial patterns of these populations.
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Unsupervised Hyperspectral Image Clustering
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The Power and Problem of HSIs

The Power: Rich Spectral Information

@ HSIs capture data across hundreds of spectral bands, enabling precise
characterization of surface materials based on spectral signatures [3].

o Essential for applications like land cover classification, spectral unmixing, and
environmental monitoring [4—6].

A\

The Problem: The Need for Labels

o State-of-the-art deep learning methods are often supervised, requiring large
amounts of expert-annotated training data.

o Acquiring ground truth for HSIs is expensive, time-consuming, and requires
specialized expertise [7].

o This bottleneck drives the critical need for unsupervised clustering methods
that can work without labels.
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Key Challenges in Unsupervised HSI Clustering

Data Complexity Data Quality

o High Dimensionality: The "curse @ Sensor Noise: Low SNR,
of dimensionality" where 200+ especially in short-wave infrared
bands lead to model overfitting and bands, degrades data quality [8].
computational challenges [3]. o Spectral Variability: Atmospheric
o Large Spatial Extent: Scenes effects and illumination changes
often exceed 10° pixels, making cause the same material to have
methods with quadratic complexity different spectral signatures
(like graph clustering) infeasible. ) (intra-class variability). |

Treating each pixel independently ignores the fact that nearby pixels are often the
same material. Any robust solution must leverage this spatial context.
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Background: The Importance of Spatial Context

In HSI, neighboring pixels are highly correlated. Exploiting this spatial information is
crucial for accurate clustering and noise reduction [3, 9].

Method 1: Spatially Regularized

Method 2: Superpixel Segmentation
Graphs

@ Groups similar pixels into small,
spatially closed regions [11].

@ Reduces computational cost by
working on superpixels.

o Edges are restricted to connect
spatially nearby pixels [10].

o This encodes spatial coherence
directly into the clustering method.

Our Approach

S?DL is novel in its integration of both superpixel segmentation and a spatially
regularized graph within a diffusion learning framework.
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Our Solution: The S?DL Framework

A Three-Stage Approach: Superpixel Segmentation — Reduced Spatially
Regularized Graph Construction — Diffusion-Based Clustering

Superpixel Segmentation Construction of kNN

_ Pixel
selection
k density maximizers in a
- superpixel
First 3 PCs Superpixel map 1
Density estimation

constructmn
Label
propagation

Classification result Modal pixels

Mode Graph
identification construction

Spatially-regularized graph

Spatially-regularized kNN

Figure: The S2DL workflow [4].
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Stage 1: Superpixel Segmentation & Representative

Selection

Step 1.1: ERS Superpixel Segmentation

We first partition the HSI into Ny spatially coherent superpixels by optimizing an
objective function on an image graph [11]. This balances segment compactness with
size uniformity:

max J(A) = H(A) +a B(A)
A N—— N——
Entropy Rate Balancing Term

where H (A) is the entropy rate (promoting compactness) and $(A) is a balancing
term (promoting size uniformity).

Kangning Cui (CityU) Detection and Segmentation for RS January 10, 2026



Stage 1: Superpixel Segmentation & Representative
Selection

Step 1.2: Representative Selection

Construct a reduced set X; C X by selecting the top k pixels from each superpixel S;
that maximize a Kernel Density Estimate (KDE) £ (x):

2
(= exp(—w)

Yekn(x) %0

N
X, = | argmax, (¢())

j=1  X€S5

This reduces |X| from N to |X;| = k - N;.
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Stage 2: Spatially Regularized Graph & Diffusion

Step 2.1: Spatially Regularized Graph Construction
Define a graph G = (X;, E,) with an adjacency matrix W € {0, 1}/X:I¥I%] The spatial
regularization is encoded directly into the connectivity:

W = 1, ifx; € kNN(x;) and distgpagar (i,/) < R
v 0, otherwise

This ensures edges only connect pixels that are close in both spectral and spatial
domains.
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Stage 2: Spatially Regularized Graph & Diffusion

Step 2.2: The Diffusion Distance

Given the row-normalized transition matrix P = D~!'W, the diffusion distance D, is
defined. It reveals the manifold geometry by averaging all paths of length 7 between
nodes [12].

Definition:
1Xs |

Dt(xux])z Z (pt(l l) pt(] l))

where p; (i, [) is the probability of transitioning from i to / in ¢ steps.
Computation (via Eigendecomposition):

X

Di(x;,x)* = ) 43" @) = wi())

=1

where (A;, ;) are the eigenpairs of P.
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Stage 3: Diffusion-Based Clustering

Step 3.1: Identify Cluster Modes
The set of K cluster modes, {x,,, }le, are the top K maximizers of the decision value

A;(x) over the representative set Xj.

{xmk }kK=1 ‘= argmax g (A (x))
x€Xs

where the decision value is the product of local density £ (x) and diffusion distance to
the nearest higher-density point d;(x):

A(x) =C(x) - di(x), with d,(x) = min D, (x,
()= £() - di(x) @)= min D)

Each mode is assigned a unique initial label, C(x,, ) = k.
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Stage 3: Diffusion-Based Clustering

Step 3.2: Propagate Labels and Finalize

For non-modal points x € X, labels are propagated iteratively in descending order of
density £ (x) according to the rule:

C(x) := C(x*), where x* = argmin D;(x,y)
YEXs
()22
C(y)>0

The final class assignment C(y) for any pixel y in a superpixel S; is determined by a
majority vote over the labeled representative pixels within that superpixel:

C(y) := argmax |{x €eS;NX; | C(x) = l}| Vy € §;
le{1,....K}
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Numerical Results on Benchmark Datasets

Table: Performance Comparison on Four HSI Datasets.

Dataset Method
K-Means  SC DPC  PGDPC DL DVIC SCI SPGDPC DLSS DSIRC SRDL S°DL
OA 0764 0841 0786 0844 0887 0976 0827 0647 0890 0911 0895 099
AA 0749 0887 0849 0893 0920 0973 0875 0680 0888 0903 0926  0.996
Salinas A k0703 0806 0740 0813 0860 0970 0789 0568 0862 0889 0870 0.995
Sum 2216 2534 2375 2550 2667 2919 2491 1895 2640 2703 2691 2987
RT 005 159 2.66 1.63 1.93 48 643 010 527 2639 1499 178
OA 038 0382 0391 0428 0404 0471 0496 0477 0467 0620  0.640  0.647
AA 0398 0368 0376 0399 0401 0376 0304 0530 0462 0549 0553  0.591
IndianPines « 0315 0313 0304 0351 0313 0383 0394 0431 0400 0573 0596  0.602
Sum 1099 1063 1071 1178 LIS 1230 1194 1438 1320 1742 1789 1840
RT 114 1440 1300 1975 1364 2433 7043 038 2055 13602 3052 219
OA 0639 0662 0668 - 0687 0696 - 0590 0702 0677 0834  0.889
AA 0612 0633 0654 - 0662 0623 - 0487 0674 0612 075 0776
Salinas k0597 0620  0.627 - 0646 0653 - 0551 0662 0633 0813 0876
Sum  1.848 1915 1949 - 1995 1972 - 1628 2038 1922 2403 2.541
RT 481 41444 43298 - 45082 49637 - 120 50488 305974 44531 8.0
OA 0625 0743 0857 - 0857 0779 - 0364 0837 0829 0771 0822
AA 0487 0507 0540 - 0540 0468 - 0515 0523 0415 0480  0.675
WHU « 0545 0674 0810 - 0810 0710 - 0276 0784 0764  0.698  0.766
Sum 1657 1924 2207 - 2207 1957 - 1155 2144 2008 1948 2263
RT 1396 189655 188126 - 185127 196599  — 250 2059.11 975597 288106 1546

S?DL consistently
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Ablation Study: When Spatial Regularization Fails

niiE

(2) DPC (b) DL (¢) SRDL (@ s2pL () $2DL* (f) GT

Figure: Clustering on WHU-Hi. S2DL with regularization (d) struggles with fragmented
classes, while S2DL* without regularization (e) succeeds.

o The Trade-off: Spatial regularization typically boosts performance by reducing
noise, but may fail when a single class is spatially fragmented.

@ The Solution: Our variant, S?DL*, removes spatial regularization to allow
clustering based purely on spectral similarity across the entire image.

o The Result: S?DL* successfully groups the fragmented regions, yielding a
dramatic performance increase (OA: +7.9%, «: +10.4%).
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Real-World Application: Mangrove Mapping in Hong Kong

s Samples Closest to Mean for Classes

Mudfat Water KO2 KOI AM Az Al AC
Prod N

(a) Ground Truth (GT) (b) S2DL Result (c) Confusion Matrix (d) Mean Spectral Signatures

Figure: S2DL effectively separates the six dominant mangrove species. The confusion matrix
confirms high accuracy, though some spectral similarity persists between certain classes.

Summary of Results

Data from Gaofen-5 satellite HSI (330 bands, 30m resolution). S2DL achieved the
best performance compared to all competing methods, demonstrating its strong
potential for unsupervised species mapping in complex ecological environments.
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Unsupervised HSI Clustering Conclusion

Summary of Contribution

o Introduced S?’DL, a novel unsupervised framework integrating superpixel
segmentation, spatial regularization, and diffusion geometry.

o Its core strategy—clustering a reduced graph of representative pixels—achieves
both high accuracy and computational efficiency.

o Validated with state-of-the-art (SOTA) results on four benchmark datasets and a
challenging mangrove mapping application.

o Automated hyperparameter selection based on intrinsic data properties.
@ Designing superpixel algorithms tailored for the high dimensionality of HSI data.

o Semi-supervised extensions where a few expert labels can guide the diffusion
process to further boost accuracy.
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Change Detection for ASGM Monitoring
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The Challenge: Monitoring Artisanal Gold Mining (ASGM)

What is ASGM?

Artisanal and Small-Scale Gold Mining involves
removing forest and disturbing alluvial sediments
to extract gold. This practice leads to:

o Extensive deforestation (e.g., >120,000 ha in
Madre de Dios, Peru by 2017 [13]).

o Creation of artificial ponds over time.

Figure: Mining ponds in La Pampa,
Peru, with different status [15].

@ Significant impacts on biogeochemistry and
public health [14].

The Need for Automation

Automated change detection using remote sensing imagery is crucial for tracking
these impacts, assessing policy, and guiding environmental management.
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Our Approach: Dual Change Detection Strategies

This section explores automated methods for detecting land-cover changes from
ASGM, focusing on the evolution of mining ponds.

Path 1: Semi-Supervised Learning 1§ Path 2: Supervised Learning

o Goal: Effective change detection @ Goal: Accurate detection of
with limited labeled data and subtle, temporally-evolving
computational resources. features.

o Method: Applies Support Vector @ Method: Introduces E-ReCNN,
Machine with Smoothed Total an extended Recurrent CNN
Variation (SVM-STV) [16]. ) architecture [15, 17].
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Study Area & Dataset: Madre de Dios (MDD), Peru

Region Focus:

o MDD, Peru: A global hotspot
for ASGM activity.

o 16 sample regions (~70 km?
each) selected in La Pampa.

o Captures varying mining
intensity and policy
enforcement.

Data Source:
o Sentinel-2 imagery via
Google Earth Engine.

o Bi-temporal snapshots: Aug
Figure: Bi-temporal Sentinel-2 imagery (2019 vs. 2021) 2019 & Jul 2021.

showing ASGM impacts in La Pampa, MDD [15]. o Preprocessing: Cloud

masking, histogram matching.
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Data Preparation & Change Classes

Image Datasets Created:

@ RGB (3-channel): For visualization & (aﬂ_, 1) 1 Binar
efficient processing. A r ‘
o Multispectral (6-channel): RGB + J i

NIR + SWIRI1 + SWIR2.
@ Multispectral (10-channel):

Additional bands.
Change Classes Derived from Pond > Thcfesh ot ; :;‘C'ease
. o . . i : ecrease

States: (Active, Transition, Inactive) Wi Correction 1 water E/A

@ Decrease (e.g., active — inactive) W NoChange

Q Increase (e.g., inactive — active) Figure: Semi-manual labeling process

© Water Existence/Absence combining color index thresholding

© No Change Ci = {Gpy and MNDWL, followed by manual

refinement [18].
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Method 1: Semi-Supervised SVM-STV

Time 1:2019/08/18

RG/B, SWIR (1.2), NIR,

1

Histogram
Matching

il

Overview of Semi-Supervised Model

Output
SVM-SVT Model (Changed Ponds)

Active/Tran:

Time 2:2021/07/23

R/G/8, SWIR (1-2), MR,

Lifting with Lab color
data lifted= Idata, L, 3, b]

Probability Maps

Figure: SVM-STV framework: Pixel-wise v-SVM

classification followed by STV spatial regularization [15].

Kangning Cui (CityU) Detection and Segmentation for RS

Core Idea: Combines
spectral classification with
spatial refinement.

Stage 1: v-SVM
Pixel-wise classification on
concatenated bi-temporal
spectral features.

Stage 2: STV

Smoothed Total Variation
regularization applied to
SVM probability maps.

Enhancement: Optional Lab
color space "lifting" to boost
feature discriminability.
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Method 2: Supervised E-ReCNN

Core Idea: Combines spatial
DR e Overview of Supervised Model and temporal features for joint

Output

E— analysis [17].

E-ReCNN Modifications:

o Additional LSTM layer
with dropout to capture

Feature Array

/s, SwiR (182), Win,

T Matching
Time 2: 2021/07/23 €
o2

Ppauucs Aiing

- o subtle temporal changes.
’—J, o Input layer separately
ReCNN by Mouet al. processes the tWO

Figure: E-ReCNN architecture: CNN for spatial feature temporal images.

extraction, LSTM for temporal modeling [15]. Strength: Effective at

detecting both large-scale and
fine-grained transitions in
features like ASGM ponds.
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Experimental Results: SVM-STV

Cohen’s Jaccard Coefficient F1 score

08 07 08
06 =nusvM

06 05 06 SuM-CK
04

0.4 03 04 WSC-MK

02 02 02 mSYMSTV
01

0.0 0.0 0.0 mSYMSTV'

10 20 30 50 100 10 20 30 50 100 10 20 30 50 100 10 20 30 50 100 10 20 30 50 100 10 20 30 50 100

6-channel 6-channel 6-channel

Figure: Average performance of SVM-based methods across MDD regions. Performance
improves with more labels and more spectral channels.

Key Findings (SVM-STV):
o Performance improves with more labeled samples per class.
@ 6-channel imagery significantly reduces misclassifications compared to RGB.
@ SVM-STV or SVM-STV’ (with Lab lifting) generally achieve best results.
o Lifting effective for RGB, marginal for 6-channel.
o Computationally efficient (<1% labels, CPU training).
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Experimental Results: E-ReCNN

Key Findings (E-ReCNN):

o Best performance achieved with
6-channel histogram-matched
imagery (Kappa ~ 0.92).

o Lab lifting showed limited benefit.

@ High accuracy in MDD (F1 for No
Change: 0.99, Water: 0.96).
@ Performance varies with mining
typology:
o Higher F1 for distinct ponds (e.g.,
Region 4, La Pampa).
o Lower F1 for diffuse sediment (e.g., Figure: E-ReCNN performance comparison in
Region 12, Huepetuhe). Region 4 (distinct ponds) vs. Region 12
(diffuse sediment).
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Generalizability: E-ReCNN on Global Mining Locations

Findings:

@ E-ReCNN maintained
competitive performance
(Kappa, Jaccard > 0.9) for
binary change.

nesuela (12/10/2018) Venesuela (12/10/2018)

Venesuela (9/20/2020)

@ Model generalizes well for
detecting ASGM-related
water bodies globally.

o Detecting fine-grained
turbidity changes
(increase/decrease) is less
effective without
region-specific training.

Figure: Test images from out-of-sample ASGM regions,
2018-2021.
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Change Detection Conclusion

Summary of Contributions

o E-ReCNN outperforms semi-supervised methods for detecting ASGM changes,
especially with 6-band Sentinel-2 imagery and histogram matching.

o SVM-STY provides a practical, resource-efficient alternative when labeled data
and multispectral inputs are limited. Effective with RGB + Lab lifting.

o A new, publicly available labeled dataset for ASGM detection was created.

Future Directions

@ Explore active learning to reduce labeling effort for semi-supervised methods.
o Extend unsupervised, diffusion-based clustering to ASGM change detection.

@ Assess E-ReCNN generalizability to other land-use changes (roads, agriculture).
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UAV-Based Palm Localization and Spatial Analysis

Kangning Cui (CityU) Detection and Segmentation for RS January 10, 2026



Importance of Palms in Tropical Forests

(b) Cases from our dataset

Figure: Comparative Samples of Manual Labels.

Ecological & Economic Significance of Palms:
@ Vital to tropical forest ecology, biodiversity, and conservation planning [19].
@ Support sustainable livelihoods and are key resources for tropical wildlife [20].
o Can serve as bioindicators of forest health and environmental impact.

Our Focus: Identifying and quantifying naturally occurring palms in complex
forests, distinct from organized plantations.
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Research Challenges & Our Contributions

Key Challenges

o Image Variability: Occlusion from overlapping canopies and inconsistent
lighting degrade image quality.

o Data Scarcity: High-quality annotated datasets for tropical forests are rare and
difficult to create.

o Spatial Analysis Gap: Most work focuses only on detection, not the large-scale
spatial structure of populations.

v

Our Contributions

@ New Dataset (PALMS): Including 21 forest sites’ orthomosaics in western
Ecuador, with over 8,800 bounding boxes and 5,000 palm center annotations.

© PRISM Framework: A flexible, interpretable pipeline for palm detection,
segmentation, and counting.

© Spatial Modeling: A Poisson-Gaussian model that simulates and provides
insight into the ecological processes driving palm distribution.

\
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The PRISM Framework

Inferencing

Model

—

Bounding Box

_____________ Saliency maps ~ Calibration plots

Detection

1
|
I
I
I
|

Input Orthomosaic

23

23

=1
Decoder

Output Visualization

Figure: The PRISM Pipeline: From detection to segmentation and analysis [21].

Core Components:
o Detection: Fine-tuned models locate palms in orthomosaic patches.

o Segmentation: Detections are used as prompts for a zero-shot Segment
Anything Model (SAM) to generate precise masks.

@ Mapping: Outputs are georeferenced for landscape-scale analysis.

o Interpretability: Grad-CAM and calibration analysis enhance model reliability.
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Detection and Segmentation Performance

Table: Detection model performance comparison.

Model GFLOPS | Params (M) | FPS T Precision T Recall T APso T AP;s T mAP T

DINO 1920.3 218.2 18.98+0.95 0.7629 +£0.0177 0.8494 £ 0.0071  0.8169 +0.0166  0.5455 +0.0150  0.5102 + 0.0101
DDQ 1232.6 218.6 19.18£0.96  0.7825+0.0124  0.8566 +0.0123  0.8541 £0.0129  0.6354 £0.0137  0.5736 + 0.0130
RT-DETR 2225 65.5 151.49+0.70  0.8869 +0.0230 0.7598 +0.0310 0.8416+0.0181 0.6198 +0.0181 0.5769 + 0.0145
YOLOvV8 226.7 61.6 17492 £0.86 0.8729 +0.0165 0.7997 +£0.0203  0.8667 = 0.0141  0.6777 +£0.0137  0.6148 +0.0128
YOLOVY 169.5 532 114.96 £0.30  0.8763 £0.0176  0.7976 +0.0209  0.8741 +0.0109 0.6762 + 0.0146  0.6162 + 0.0122
YOLOvI0 169.8 31.6 177.04 £ 1.14  0.8716 £0.0121  0.7968 + 0.0089  0.8626 + 0.0129  0.6794 + 0.0112  0.6173 + 0.0090
YOLO11 194.4 56.8 170.40 £0.95 0.8721 £0.0095 0.7896 +0.0127 0.8684 +0.0108 0.6677 +0.0180 0.6115 + 0.0109

Key Findings:

@ YOLOVI10 (Selected): Best overall trade-off, achieving the highest mAP, AP75
and inference speed with the fewest parameters.

o DDQ: Highest recall, ideal when finding all possible instances is prioritized.

o RT-DETR: Highest precision, but misses more palms (lower recall).

Kangning Cui (CityU) Detection and Segmentation for RS



Segmentation Performance: Comparing S Variants

FCAT Jama-Coaque Canande Tesoro Escondido

<
"

Figure: Visual comparison of SAM variants for zero-shot palm segmentation.

SAM 2

Mobile SAM

Key Findings

@ We use the detector’s bounding boxes as prompts for zero-shot segmentation.
o A comparison revealed distinct behaviors on our dataset:

o Original SAM: Occasionally produces incomplete segments (under-segments).
o MobileSAM: Tends to over-segment into non-palm areas.
o SAM 2 (Selected): Provides the most balanced and accurate segmentation.
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Visualizing What the Model "Sees" with Grad-C

Input Layer | Layer 4 Layer 7 Layer 10 Layer 16 Layer 19 Layer 22

Figure: Hierarchical Feature Learning in YOLOV10 through Grad-CAM Visualizations.

Hierarchical Feature Learning

The analysis confirms the model learns a meaningful progression: early layers focus
on low-level edges and textures; intermediate layers integrate spatial context; and deep
layers exhibit focused activation over entire palm crowns.

Kangning Cui (CityU) Detection and ntation for RS January 10, 2026 40/63



Model Interpretability: A Step-by-Step Guide to Calibration

1. Initial Output 2. LRP Thresholding 3. Post-Hoc Calibration

10 Before Threshold A 10 After Threshold A ) 1.0 Temperature Scaling .
’ ‘ - oU " - oU . loU
% of Samples % of Samples % of Samples
0.8 0.8 0.8
R 1 ke o) LoAcE 035
0.61 0.6 .
0.44 0.4 0.4
0.2 0.2 02
0'%.6/ 02 04 06 X X 0'%'.6/ 02 04 06 . X 80 0z oa 06 08 10
Confidence Confidence Confidence

The Problem The First Fix The Final Result
The uncalibrated model is | LRP-based thresholding is | A post-hoc method (e.g.,
unreliable; its confidence first applied to prune the Temperature Scaling) is
scores are poorly correlated | large number of unreliable, | then applied to align
with true accuracy (IoU). | low-confidence predictions. | confidence with accuracy.
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Quantitative Analysis of Counting Performance

Table: Counting performance across four distinct Summary of Findings:

ecological sites. c .o
& @ Precision is high across all
site Avea (ha)  Counts Pred2GT GT2Pred sites, indicating the model
Ratio Median (m) Ratio Median (m) generates few false positives.
FCAT 21.62 471 0.9361 1.10 0.8854 0.77
Jama-Coaque 111.93 952 0.9348 1.50 0.8151 114 @ Recall is more variable,
Canande 101.20 1,273 0.8956 0.82 0.7667 0.72 . .
Tesoro Escondido 8676 2330  0.8981 109 09253 091 showing that detecting every
true palm is harder and
Key Metrics: site-dependent.
o Pred2GT Ratio (Precision): Proportion of o Sites like Tesoro Escondido
predictions matched to a ground truth palm. show balanced performance,
o GT2Pred Ratio (Recall): Proportion of Vf’h{le Canande reveals recall
ground truth palms matched by a prediction. limitations (some palms are
missed).
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Background: Measuring Spatial Point Patterns

Goal Formal Definitions

To quantify if a spatial point pattern is clustered,
random, or regular by comparing it against a Function Formulation
model of Complete Spatial Randomness (CSR). ~

plete Sp R 6@ ArMu@<a

Ripley’s G & F Functions

These are cumulative distribution functions
(CDFs) that measure nearest-neighbor distances
at a given distance radius d: J(d)

@ G(d): CDF of distances from each point to
its nearest neighbor in the pattern. It
quantifies internal clustering.

@ F(d): CDF of distances from random
locations to the nearest point in the pattern. J
It quantifies empty space.

F(d) 2% 1(d < d)

1-G(d)
1-F(d)

Here, N is the number of observed points and Zii is the distance
from point i to its nearest neighbor. Ny is the number of random
points and dj is the distance from random point j to the nearest
observed point.
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Modeling Palm Distributions

To simulate palm spatial patterns that match observed distributions and to understand
the ecological drivers of reproduction (e.g., long-range dispersal vs. local clustering).
v

The Core Mechanism: A Hybrid Generative Process

The model simulates palm propagation by combining two key ecological processes,
controlled by two interpretable parameters [22]:

o Global Dispersal (Poisson): With probability (1 — p), a new palm is placed
randomly, representing animal-mediated or long-range dispersal.

o Local Clustering (Gaussian): With probability p, a new palm is placed near a
parent, drawn from N (Xparent» 0'21), representing local seed drop.

Parameter Fitting

|

The optimal parameters (p*, c*) are found by identifying the pair that generates
simulated patterns whose spatial statistics (Ripley’s G and F functions) most closely
match those of the observed data.
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The Poisson-Gaussian Algorithm: Implementation Details

Algorithm Pseudocode Discrepancy Metric

Input: Candidate params (p, o), Observed points X | The discrepancy d; for each simulation
Output: Optimal params (p*, o) is the integrated absolute difference

Initialize: diy « b b d and simulated
Pre-compute: Observed Ripley’s stats Gps, Fops- ctween observed and simulate

for each (p, o) in grid do Ripley’s functions:
drotal — 0
for i = 1 to N simulations do
1. Generate simulated set X; via the di = / |g0bs - gsiml + / |fobs - fsiml
Poisson-Gaussian process. b

2. Compute simulated stats Gy, Fim-

3. Calculate discrepancy d;. timization Process
4. Add d; to dipq- Op
end for A grid search is performed over the

. parameter space. The pair (p*, o)

i dioat < i then that minimizes the total discrepanc
Update dyin, p* < p, 0" « o. . 4 . : pancy

end if over all simulations is selected as the

end for optimal fit.
return p*, o
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Observed Spatial Patterns: Clustered or Random?

FCAT 1 FCAT 2 FCAT 3 Jama-Coaque 1 Jama-Coaque 2

Figure: Kernel Density Estimates (KDEs) of detected palm locations across five study sites,
visually suggesting non-random clustering.

The Central Research Question

The spatial arrangement of palms appears clustered, but is this pattern statistically
significant? We test the observed distributions against a null model of CSR.

Kangning Cui (CityU) Detection and Segmentation for RS January 10, 2026



Statistical Proof: Analysis with Ripley’s Functions

FCAT 1 FCAT 2 FCAT 3 Jama-Coaque 1 Jama-Coaque 2

Figure: Ripley’s function plots for each site. The observed pattern (red curve) is compared
against the 95% confidence envelope of a CSR process (blue curve with shaded area).

Conclusion from the Analysis

The results confirm a statistically significant departure from randomness across all
sites, with Ripley’s functions revealing both dense internal clustering (G-function) and
large empty spaces (F-function). This strong, non-random aggregation justifies our
development of a more complex reproduction model.
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Simulation Results: Replicating Observed Patterns

Predicted Points Simulated Points with p = 0.64 and g=80 Uniform Points Ripley's G(d) function Ripley's F(d) function
: [ I o

s 5. —
£ £

E 8 < <

2 2 N g 2
e E
s £
3 3 /

=™ Longitude * Longitude Longitude Distance (meters) Distance (meters)

Figure: Visual and statistical comparison for the site Jama-Coaque 1. From left to right: PRISM
prediction, model simulation, random distribution, G-, and F-function comparison.

Optimal Parameters § Key Findings

Fitted (p*, o) across sites.

Site | p*

FCAT 1 | 0.49
FCAT 2 | 0.52
FCAT 3 | 0.46
Jama-Coaque 1 | 0.64
Jama-Coaque 2 | 0.51

@ The optimal parameters are highly consistent.

@ This indicates a stable balance between local
clustering (within a ~2-4 meter radius) and
random, long-range dispersal.

o The strong alignment between simulated and

observed Ripley’s functions (right panels)
validates the model’s fidelity.
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Palm Detection and Distribution Conclusion

Summary of Contributions

o Created PALMS, a new, large-scale annotated dataset for palm detection in
ecologically diverse tropical forests.

o Developed PRISM, an end-to-end framework for efficient palm detection,
segmentation, and counting from UAV imagery.

o Introduced a simple, two-parameter Poisson-Gaussian model that successfully
replicates the complex spatial dynamics of palm distribution, as validated by
Ripley’s functions.

v
Future Directions

o Dataset Expansion: A 1000 km?> Amazonian region in Peru.

o Model Enhancement: Improve the localization quality of palm centers.

o Deployment & Extension: Real-time, on-device deployment (e.g., NVIDIA
Jetson) and extension to species-level classification.

A\
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Fetal Heart Tracking in Ultrasound Videos
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The Clinical Challenge: Congenital Heart Defects (CHDs)

A Global Health Concern

o CHDs affect up to 1.2% of all live births globally and are a primary cause of
neonatal mortality [23].

o Early diagnosis via Fetal Echocardiography (FE) is crucial for improving
survival rates [24].

The Diagnostic Bottleneck

@ Accurate interpretation of FE scans requires extensive expertise.

o A global scarcity of trained sonographers and cardiologists creates a significant
barrier to early diagnosis, especially in low-resource settings [25].
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Technical Challenges in Fetal Ultrasound Analysis

Data Heterogeneity and Quality

Real-world ultrasound data exhibits high variability due to different imaging machines,
software, and scanning protocols, which can compromise model generalization.

Inherent Challenges of Fetal Cardiac Imaging

@ The fetal heart is a small, rapidly beating organ with variable positioning and
orientation.

@ The heart occupies a widely varying portion of the frame (from 2.3% to 61% in
our dataset).

@ Videos are often screen-captured, including inconsistent graph user interfaces.

The Need for Temporal Awareness

Most prior work focuses on single frames, disregarding the rich information of the
beating heart. Our work aims to address this by explicitly modeling temporal context.
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Our Approach: A 3D CNN for Temporal Tracking

-
layer input
Conv. Block

Conv. Block

x
5]
2
)
=
=
<)
o

Residual Block
Residual Block
Residual Block
Residual Block

Conv. Block

Conv. Block

layer output

Input Video Clip Output Bounding Box

Residual Block

Figure: The modified 3D ResNet-18 architecture processes video clips to predict bounding
boxes and presence indicators.

The Model:
o A modified 3D ResNet-18 architecture processes video clips (e.g., 64 frames).
@ Preserves temporal resolution while downsampling spatial dimensions.
The Loss Function: A hybrid loss balances multiple objectives:
@ Bounding box regression (MSE).
o Heart presence classification (Cross-Entropy).
e Temporal smoothness regularization (L?>-norm).
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Dataset & Ground Truth Definition

Heart Tracking Set (Site 1)

Anomaly Classification Set

o 738 scans from 401 healthy participants. (Site 2)

@ Manual bounding box annotations @ 3051 scans from 432 participants.
reviewed by an expert fetal cardiologist. o Used to validate the downstream

o Includes multiple standard cardiac views benefit of our tracking model for
(4CH, 3VYV, etc.). CHD detection.

Ground Truth Formulation:
For each frame, the ground truth g; encodes the bounding box and heart presence:

0 .1
gi = (C;C9C;)s r/i\”’ Vly,y,,yl)
@ c: box center coordinates

@ r: box half-dimensions

@ y: one-hot vector for presence/absence
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Results: Fetal Heart Tracking Performance

Table: Performance comparison for fetal heart tracking. Our 3D-based method with L2
regularization shows the best overall performance.

Method Acc.T AP@507 AP@75T  MSEconser(X10%) | MSE,uqins(x10%) | mloU7

YOLOI11 [26] 0.633  0.663 0.543 3.676+3.678 3.179+3.383 0.536+0.329
Conv2D 0.843  0.747 0.160 1.032+1.441 0.115+0.221 0.614+0.202
Conv2D+channel 0.876  0.824 0.223 0.826+1.322 0.099+0.173 0.643+0.184
Ours 0911  0.838 0.319 0.616+1.022 0.103+0.179 0.678+0.173
Ours (w/ L2) 0918  0.866 0.341 0.525+0.801 0.093+0.169 0.693+0.161

Key Takeaway

Explicitly modeling temporal information with a 3D architecture significantly
outperforms frame-wise detection methods like YOLOv11. Adding a temporal
smoothness regularization term (L2) further improves all performance metrics.
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Qualitative Results:

Figure: Tracking performance on
two clinical cases. Bounding boxes:
Ground Truth (blue), YOLOvI11
baseline (green), and our proposed
method (orange).

isual Tracking Comparison

Baseline (YOLOv11)

@ Struggles to maintain tracking consistency.

@ Predictions can be unstable or missed.

@ High spatial accuracy on frames it does detect.
v

Our Method

@ Delivers significantly smoother and more
consistent tracking across the cardiac cycle.

@ Robust to variations in heart rate and motion. )

Key Takeaway

The visual results highlight the critical importance
of temporal modeling for reliable tracking in
dynamic ultrasound videos.

\,
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Performance Analysis: Tracking and Downstream Impact

Receiver Operating Characteristic Comparison of AP at different loU Thresholds
e Method

1.0
08 ° o @ Ours w/o L2 Reg.
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Figure: Left: AUC curves for CHD detection. Right: AP curves for the tracking task.

Key Findings
o Downstream Impact: Using our tracking model for preprocessing improves
CHD detection, achieving a superior AUC of 0.92 over a standard center crop.
o Tracking Performance: Our 3D temporal model offers more consistent tracking
(higher AP@50), while the frame-wise YOLOv11 shows better spatial
localization when it succeeds (higher AP@75).

January 10, 2026
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Fetal Heart Tracking Conclusion

Summary of Contribution

@ Proposed a novel 3D deep learning method for fetal heart tracking in real-world
ultrasound videos.

o The model demonstrated superior performance over strong baselines like
YOLOv11 by combining spatial and temporal information.

o Showcased the method’s utility as a pre-processing module, leading to improved
accuracy in downstream CHD classification.

Future Directions

o Extend the framework to support detailed motion analysis by tracking multiple
anatomical landmarks within the heart.

o Validate the method across a broader, more diverse patient population in
collaboration with additional clinical institutions.
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Conclusion
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Thesis Conclusion: Summary of Contributions

A Common Theme

Across diverse domains, this thesis contributes data-efficient, interpretable, and
spatially-aware machine learning frameworks to solve challenges with limited
supervision and complex data structures.

Key Contributions

| A

o HSI Clustering: Introduced S?’DL, an efficient unsupervised method combining
superpixel segmentation and diffusion geometry.

o Change Detection: Applied supervised (E-ReCNN) and semi-supervised
(SVM-STYV) frameworks for detecting ASGM activities in Sentinel-2 imagery.

o UAV Imagery Analysis: Designed the PRISM pipeline for UAV-based palm
detection and counting, complemented by a Poisson-Gaussian model for
simulating spatial patterns.
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Thank You

Questions & Discussion

Kangning Cui
City University of Hong Kong
ckn3.github.io

Detection and Segmentation for RS
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https://ckn3.github.io/
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