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Introduction
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Fundamentals: Optical vs. Non-Optical Sensing

Optical Sensing (Our Focus)
Principle: Detects reflected
sunlight across spectral bands [1].
Provides: Rich spectral and spatial
detail.

Non-Optical Sensing
Principle: Emits its own signal
(SAR) or detects heat (Thermal) [2].
Provides: Surface structure,
moisture, and temperature.

Rationale: Why This Thesis Focuses on Optical Sensing
This thesis employs optical sensing because its research questions require the rich
spectral and spatial data needed to identify species, classify crops, and monitor
ecological changes.

Main Goal
To design and implement computationally efficient, interpretable, and scalable
frameworks for unsupervised clustering, change detection, and object localization in
complex remote sensing data.
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Contribution 1: S2DL for HSI Clustering

(a) PCs (b) K-Means (c) SC (d) DPC (e) PGDPC (f) DL (g) D-VIC

(h) SC-I (i) S-PGDPC (j) DLSS (k) DSIRC (l) SRDL (m) S2DL (n) GT

Figure: Comparison of clustering results on the Salinas A dataset.

S2DL successfully integrates spatial information to produce clean, accurate clusters
that align with the ground truth for hyperspectral images (HSIs).
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Contribution 2: Monitoring Small-Scale Gold Mining

Figure: Pond dynamics in two ASGM regions.
Performance varies with mining typology.

E-ReCNN effectively detects land
and water changes in the Peruvian
Amazon using Sentinel-2 data,
with results varying by mining
typology.
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Contribution 3: Palm Detection in UAV Imagery

(a) Input Image (b) Layer 1 (c) Layer 4 (d) Layer 7 (e) Layer 10 (f) Layer 16 (g) Layer 19 (h) Layer 22

Figure: Hierarchical Feature Learning in YOLOv10 through Grad-CAM Visualizations. Early
layers capture low-level edges, intermediate layers integrate spatial context, while deep layers
specialize in object-level features.

PRISM is a framework for detecting, mapping, and segmenting palm crowns in
high-resolution UAV imagery. It further integrates ecological models to analyze the
spatial patterns of these populations.
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Unsupervised Hyperspectral Image Clustering
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The Power and Problem of HSIs

The Power: Rich Spectral Information
HSIs capture data across hundreds of spectral bands, enabling precise
characterization of surface materials based on spectral signatures [3].
Essential for applications like land cover classification, spectral unmixing, and
environmental monitoring [4–6].

The Problem: The Need for Labels
State-of-the-art deep learning methods are often supervised, requiring large
amounts of expert-annotated training data.
Acquiring ground truth for HSIs is expensive, time-consuming, and requires
specialized expertise [7].
This bottleneck drives the critical need for unsupervised clustering methods
that can work without labels.
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Key Challenges in Unsupervised HSI Clustering

Data Complexity
High Dimensionality: The "curse
of dimensionality" where 200+
bands lead to model overfitting and
computational challenges [3].
Large Spatial Extent: Scenes
often exceed 106 pixels, making
methods with quadratic complexity
(like graph clustering) infeasible.

Data Quality
Sensor Noise: Low SNR,
especially in short-wave infrared
bands, degrades data quality [8].
Spectral Variability: Atmospheric
effects and illumination changes
cause the same material to have
different spectral signatures
(intra-class variability).

Core Issue
Treating each pixel independently ignores the fact that nearby pixels are often the
same material. Any robust solution must leverage this spatial context.
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Background: The Importance of Spatial Context

Key Insight
In HSI, neighboring pixels are highly correlated. Exploiting this spatial information is
crucial for accurate clustering and noise reduction [3, 9].

Method 1: Spatially Regularized
Graphs

Edges are restricted to connect
spatially nearby pixels [10].
This encodes spatial coherence
directly into the clustering method.

Method 2: Superpixel Segmentation
Groups similar pixels into small,
spatially closed regions [11].
Reduces computational cost by
working on superpixels.

Our Approach
S2DL is novel in its integration of both superpixel segmentation and a spatially
regularized graph within a diffusion learning framework.
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Our Solution: The S2DL Framework

A Three-Stage Approach: Superpixel Segmentation → Reduced Spatially
Regularized Graph Construction → Diffusion-Based Clustering

Figure: The S2DL workflow [4].
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Stage 1: Superpixel Segmentation & Representative
Selection

Step 1.1: ERS Superpixel Segmentation
We first partition the HSI into Ns spatially coherent superpixels by optimizing an
objective function on an image graph [11]. This balances segment compactness with
size uniformity:

max
A
J (A) = H(A)︸︷︷︸

Entropy Rate

+𝛼 B(A)︸︷︷︸
Balancing Term

whereH(A) is the entropy rate (promoting compactness) and B(A) is a balancing
term (promoting size uniformity).
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Stage 1: Superpixel Segmentation & Representative
Selection

Step 1.2: Representative Selection
Construct a reduced set Xs ⊂ X by selecting the top k pixels from each superpixel Sj
that maximize a Kernel Density Estimate (KDE) 𝜁 (x):

𝜁 (x) =
∑︁

y∈kn (x)
exp

(
−
||x − y| |22

𝜎2
0

)

Xs =

Ns⋃
j=1

argmaxk
x∈Sj

(𝜁 (x))

This reduces |X | from N to |Xs | = k · Ns.
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Stage 2: Spatially Regularized Graph & Diffusion

Step 2.1: Spatially Regularized Graph Construction
Define a graph G = (Xs,Es) with an adjacency matrix W ∈ {0, 1} |Xs |× |Xs | . The spatial
regularization is encoded directly into the connectivity:

Wĳ =

{
1, if xj ∈ kNN (xi) and distspatial (i, j) ≤ R
0, otherwise

This ensures edges only connect pixels that are close in both spectral and spatial
domains.

Kangning Cui (CityU) Detection and Segmentation for RS January 10, 2026 15 / 63



Stage 2: Spatially Regularized Graph & Diffusion

Step 2.2: The Diffusion Distance
Given the row-normalized transition matrix P = D−1W, the diffusion distance Dt is
defined. It reveals the manifold geometry by averaging all paths of length t between
nodes [12].

Definition:

Dt (xi, xj)2 =

|Xs |∑︁
l=1

(pt (i, l) − pt (j, l))2

𝜋l

where pt (i, l) is the probability of transitioning from i to l in t steps.

Computation (via Eigendecomposition):

Dt (xi, xj)2 =

|Xs |∑︁
l=1

𝜆2t
l [𝜓l (i) − 𝜓l (j)]2

where (𝜆l, 𝜓l) are the eigenpairs of P.
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Stage 3: Diffusion-Based Clustering

Step 3.1: Identify Cluster Modes
The set of K cluster modes, {xmk }Kk=1, are the top K maximizers of the decision value
Δt (x) over the representative set Xs.

{xmk }Kk=1 := argmaxK
x∈Xs

(Δt (x))

where the decision value is the product of local density 𝜁 (x) and diffusion distance to
the nearest higher-density point dt (x):

Δt (x) = 𝜁 (x) · dt (x), with dt (x) = min
y∈Xs:𝜁 (y)>𝜁 (x)

Dt (x, y)

Each mode is assigned a unique initial label, Ĉ(xmk ) = k.
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Stage 3: Diffusion-Based Clustering

Step 3.2: Propagate Labels and Finalize
For non-modal points x ∈ Xs, labels are propagated iteratively in descending order of
density 𝜁 (x) according to the rule:

Ĉ(x) := Ĉ(x∗), where x∗ = arg min
y∈Xs

𝜁 (y)≥𝜁 (x)
Ĉ (y)>0

Dt (x, y)

The final class assignment C(y) for any pixel y in a superpixel Sj is determined by a
majority vote over the labeled representative pixels within that superpixel:

C(y) := arg max
l∈{1,...,K}

��{x ∈ Sj ∩ Xs | Ĉ(x) = l}
�� , ∀y ∈ Sj
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Numerical Results on Benchmark Datasets
Table: Performance Comparison on Four HSI Datasets.

Dataset Method
K-Means SC DPC PGDPC DL D-VIC SC-I S-PGDPC DLSS DSIRC SRDL S2DL

Salinas A

OA 0.764 0.841 0.786 0.844 0.887 0.976 0.827 0.647 0.890 0.911 0.895 0.996
AA 0.749 0.887 0.849 0.893 0.920 0.973 0.875 0.680 0.888 0.903 0.926 0.996
𝜅 0.703 0.806 0.740 0.813 0.860 0.970 0.789 0.568 0.862 0.889 0.870 0.995

Sum 2.216 2.534 2.375 2.550 2.667 2.919 2.491 1.895 2.640 2.703 2.691 2.987
RT 0.05 1.59 2.66 1.63 1.93 4.89 6.43 0.10 5.27 26.39 14.99 1.78

Indian Pines

OA 0.386 0.382 0.391 0.428 0.404 0.471 0.496 0.477 0.467 0.620 0.640 0.647
AA 0.398 0.368 0.376 0.399 0.401 0.376 0.304 0.530 0.462 0.549 0.553 0.591
𝜅 0.315 0.313 0.304 0.351 0.313 0.383 0.394 0.431 0.400 0.573 0.596 0.602

Sum 1.099 1.063 1.071 1.178 1.118 1.230 1.194 1.438 1.329 1.742 1.789 1.840
RT 1.14 14.40 13.10 19.75 13.64 24.33 70.43 0.38 20.55 136.02 30.52 2.19

Salinas

OA 0.639 0.662 0.668 – 0.687 0.696 – 0.590 0.702 0.677 0.834 0.889
AA 0.612 0.633 0.654 – 0.662 0.623 – 0.487 0.674 0.612 0.756 0.776
𝜅 0.597 0.620 0.627 – 0.646 0.653 – 0.551 0.662 0.633 0.813 0.876

Sum 1.848 1.915 1.949 – 1.995 1.972 – 1.628 2.038 1.922 2.403 2.541
RT 4.81 414.44 432.98 – 450.82 496.37 – 1.20 504.88 3059.74 445.31 8.80

WHU

OA 0.625 0.743 0.857 – 0.857 0.779 – 0.364 0.837 0.829 0.771 0.822
AA 0.487 0.507 0.540 – 0.540 0.468 – 0.515 0.523 0.415 0.480 0.675
𝜅 0.545 0.674 0.810 – 0.810 0.710 – 0.276 0.784 0.764 0.698 0.766

Sum 1.657 1.924 2.207 – 2.207 1.957 – 1.155 2.144 2.008 1.948 2.263
RT 13.96 1896.55 1881.26 – 1851.27 1965.99 – 2.50 2059.11 9755.97 2881.06 15.46

Key Takeaway
S2DL consistently achieves the best composite score while being quick.
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Ablation Study: When Spatial Regularization Fails

(a) DPC (b) DL (c) SRDL (d) S2DL (e) S2DL* (f) GT

Figure: Clustering on WHU-Hi. S2DL with regularization (d) struggles with fragmented
classes, while S2DL* without regularization (e) succeeds.

The Trade-off: Spatial regularization typically boosts performance by reducing
noise, but may fail when a single class is spatially fragmented.
The Solution: Our variant, S2DL*, removes spatial regularization to allow
clustering based purely on spectral similarity across the entire image.
The Result: S2DL* successfully groups the fragmented regions, yielding a
dramatic performance increase (OA: +7.9%, 𝜅: +10.4%).
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Real-World Application: Mangrove Mapping in Hong Kong

(a) Ground Truth (GT) (b) S2DL Result (c) Confusion Matrix (d) Mean Spectral Signatures

Figure: S2DL effectively separates the six dominant mangrove species. The confusion matrix
confirms high accuracy, though some spectral similarity persists between certain classes.

Summary of Results
Data from Gaofen-5 satellite HSI (330 bands, 30m resolution). S2DL achieved the
best performance compared to all competing methods, demonstrating its strong
potential for unsupervised species mapping in complex ecological environments.
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Unsupervised HSI Clustering Conclusion

Summary of Contribution
Introduced S2DL, a novel unsupervised framework integrating superpixel
segmentation, spatial regularization, and diffusion geometry.
Its core strategy—clustering a reduced graph of representative pixels—achieves
both high accuracy and computational efficiency.
Validated with state-of-the-art (SOTA) results on four benchmark datasets and a
challenging mangrove mapping application.

Future Work
Automated hyperparameter selection based on intrinsic data properties.
Designing superpixel algorithms tailored for the high dimensionality of HSI data.
Semi-supervised extensions where a few expert labels can guide the diffusion
process to further boost accuracy.
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Change Detection for ASGM Monitoring
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The Challenge: Monitoring Artisanal Gold Mining (ASGM)

What is ASGM?
Artisanal and Small-Scale Gold Mining involves
removing forest and disturbing alluvial sediments
to extract gold. This practice leads to:

Extensive deforestation (e.g., >120,000 ha in
Madre de Dios, Peru by 2017 [13]).
Creation of artificial ponds over time.
Significant impacts on biogeochemistry and
public health [14].

Figure: Mining ponds in La Pampa,
Peru, with different status [15].

The Need for Automation
Automated change detection using remote sensing imagery is crucial for tracking
these impacts, assessing policy, and guiding environmental management.
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Our Approach: Dual Change Detection Strategies

This section explores automated methods for detecting land-cover changes from
ASGM, focusing on the evolution of mining ponds.

Path 1: Semi-Supervised Learning
Goal: Effective change detection
with limited labeled data and
computational resources.
Method: Applies Support Vector
Machine with Smoothed Total
Variation (SVM-STV) [16].

Path 2: Supervised Learning
Goal: Accurate detection of
subtle, temporally-evolving
features.
Method: Introduces E-ReCNN,
an extended Recurrent CNN
architecture [15, 17].
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Study Area & Dataset: Madre de Dios (MDD), Peru

Figure: Bi-temporal Sentinel-2 imagery (2019 vs. 2021)
showing ASGM impacts in La Pampa, MDD [15].

Region Focus:
MDD, Peru: A global hotspot
for ASGM activity.
16 sample regions (∼70 km2

each) selected in La Pampa.
Captures varying mining
intensity and policy
enforcement.

Data Source:
Sentinel-2 imagery via
Google Earth Engine.
Bi-temporal snapshots: Aug
2019 & Jul 2021.
Preprocessing: Cloud
masking, histogram matching.
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Data Preparation & Change Classes

Image Datasets Created:
RGB (3-channel): For visualization &
efficient processing.
Multispectral (6-channel): RGB +
NIR + SWIR1 + SWIR2.
Multispectral (10-channel):
Additional bands.

Change Classes Derived from Pond
States: (Active, Transition, Inactive)

1 Decrease (e.g., active→ inactive)
2 Increase (e.g., inactive→ active)
3 Water Existence/Absence
4 No Change

Figure: Semi-manual labeling process
combining color index thresholding
Ci = (G−R)

(G+R) and MNDWI, followed by manual
refinement [18].
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Method 1: Semi-Supervised SVM-STV

Figure: SVM-STV framework: Pixel-wise 𝜈-SVM
classification followed by STV spatial regularization [15].

Core Idea: Combines
spectral classification with
spatial refinement.

Stage 1: 𝜈-SVM
Pixel-wise classification on
concatenated bi-temporal
spectral features.

Stage 2: STV
Smoothed Total Variation
regularization applied to
SVM probability maps.

Enhancement: Optional Lab
color space "lifting" to boost
feature discriminability.
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Method 2: Supervised E-ReCNN

Figure: E-ReCNN architecture: CNN for spatial feature
extraction, LSTM for temporal modeling [15].

Core Idea: Combines spatial
and temporal features for joint
analysis [17].

E-ReCNN Modifications:
Additional LSTM layer
with dropout to capture
subtle temporal changes.
Input layer separately
processes the two
temporal images.

Strength: Effective at
detecting both large-scale and
fine-grained transitions in
features like ASGM ponds.
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Experimental Results: SVM-STV

Figure: Average performance of SVM-based methods across MDD regions. Performance
improves with more labels and more spectral channels.

Key Findings (SVM-STV):
Performance improves with more labeled samples per class.
6-channel imagery significantly reduces misclassifications compared to RGB.
SVM-STV or SVM-STV’ (with Lab lifting) generally achieve best results.
Lifting effective for RGB, marginal for 6-channel.
Computationally efficient (<1% labels, CPU training).
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Experimental Results: E-ReCNN

Key Findings (E-ReCNN):
Best performance achieved with
6-channel histogram-matched
imagery (Kappa ≈ 0.92).
Lab lifting showed limited benefit.
High accuracy in MDD (F1 for No
Change: 0.99, Water: 0.96).
Performance varies with mining
typology:

Higher F1 for distinct ponds (e.g.,
Region 4, La Pampa).
Lower F1 for diffuse sediment (e.g.,
Region 12, Huepetuhe).

Figure: E-ReCNN performance comparison in
Region 4 (distinct ponds) vs. Region 12
(diffuse sediment).
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Generalizability: E-ReCNN on Global Mining Locations

Figure: Test images from out-of-sample ASGM regions,
2018-2021.

Findings:
E-ReCNN maintained
competitive performance
(Kappa, Jaccard > 0.9) for
binary change.
Model generalizes well for
detecting ASGM-related
water bodies globally.
Detecting fine-grained
turbidity changes
(increase/decrease) is less
effective without
region-specific training.
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Change Detection Conclusion

Summary of Contributions
E-ReCNN outperforms semi-supervised methods for detecting ASGM changes,
especially with 6-band Sentinel-2 imagery and histogram matching.
SVM-STV provides a practical, resource-efficient alternative when labeled data
and multispectral inputs are limited. Effective with RGB + Lab lifting.
A new, publicly available labeled dataset for ASGM detection was created.

Future Directions
Explore active learning to reduce labeling effort for semi-supervised methods.
Extend unsupervised, diffusion-based clustering to ASGM change detection.
Assess E-ReCNN generalizability to other land-use changes (roads, agriculture).
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UAV-Based Palm Localization and Spatial Analysis
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The Importance of Palms in Tropical Forests

(a) Cases from existing studies (b) Cases from our dataset

Figure: Comparative Samples of Manual Labels.

Ecological & Economic Significance of Palms:
Vital to tropical forest ecology, biodiversity, and conservation planning [19].
Support sustainable livelihoods and are key resources for tropical wildlife [20].
Can serve as bioindicators of forest health and environmental impact.

Our Focus: Identifying and quantifying naturally occurring palms in complex
forests, distinct from organized plantations.

Kangning Cui (CityU) Detection and Segmentation for RS January 10, 2026 35 / 63



Research Challenges & Our Contributions

Key Challenges
Image Variability: Occlusion from overlapping canopies and inconsistent
lighting degrade image quality.
Data Scarcity: High-quality annotated datasets for tropical forests are rare and
difficult to create.
Spatial Analysis Gap: Most work focuses only on detection, not the large-scale
spatial structure of populations.

Our Contributions
1 New Dataset (PALMS): Including 21 forest sites’ orthomosaics in western

Ecuador, with over 8,800 bounding boxes and 5,000 palm center annotations.
2 PRISM Framework: A flexible, interpretable pipeline for palm detection,

segmentation, and counting.
3 Spatial Modeling: A Poisson-Gaussian model that simulates and provides

insight into the ecological processes driving palm distribution.
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The PRISM Framework

Figure: The PRISM Pipeline: From detection to segmentation and analysis [21].

Core Components:
Detection: Fine-tuned models locate palms in orthomosaic patches.
Segmentation: Detections are used as prompts for a zero-shot Segment
Anything Model (SAM) to generate precise masks.
Mapping: Outputs are georeferenced for landscape-scale analysis.
Interpretability: Grad-CAM and calibration analysis enhance model reliability.
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Detection and Segmentation Performance

Table: Detection model performance comparison.

Model GFLOPS ↓ Params (M) ↓ FPS ↑ Precision ↑ Recall ↑ AP50 ↑ AP75 ↑ mAP ↑
DINO 1920.3 218.2 18.98 ± 0.95 0.7629 ± 0.0177 0.8494 ± 0.0071 0.8169 ± 0.0166 0.5455 ± 0.0150 0.5102 ± 0.0101
DDQ 1232.6 218.6 19.18 ± 0.96 0.7825 ± 0.0124 0.8566 ± 0.0123 0.8541 ± 0.0129 0.6354 ± 0.0137 0.5736 ± 0.0130
RT-DETR 222.5 65.5 151.49 ± 0.70 0.8869 ± 0.0230 0.7598 ± 0.0310 0.8416 ± 0.0181 0.6198 ± 0.0181 0.5769 ± 0.0145
YOLOv8 226.7 61.6 174.92 ± 0.86 0.8729 ± 0.0165 0.7997 ± 0.0203 0.8667 ± 0.0141 0.6777 ± 0.0137 0.6148 ± 0.0128
YOLOv9 169.5 53.2 114.96 ± 0.30 0.8763 ± 0.0176 0.7976 ± 0.0209 0.8741 ± 0.0109 0.6762 ± 0.0146 0.6162 ± 0.0122
YOLOv10 169.8 31.6 177.04 ± 1.14 0.8716 ± 0.0121 0.7968 ± 0.0089 0.8626 ± 0.0129 0.6794 ± 0.0112 0.6173 ± 0.0090
YOLO11 194.4 56.8 170.40 ± 0.95 0.8721 ± 0.0095 0.7896 ± 0.0127 0.8684 ± 0.0108 0.6677 ± 0.0180 0.6115 ± 0.0109

Key Findings:
YOLOv10 (Selected): Best overall trade-off, achieving the highest mAP, AP75
and inference speed with the fewest parameters.
DDQ: Highest recall, ideal when finding all possible instances is prioritized.
RT-DETR: Highest precision, but misses more palms (lower recall).
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Segmentation Performance: Comparing SAM Variants

Figure: Visual comparison of SAM variants for zero-shot palm segmentation.

Key Findings
We use the detector’s bounding boxes as prompts for zero-shot segmentation.
A comparison revealed distinct behaviors on our dataset:

Original SAM: Occasionally produces incomplete segments (under-segments).
MobileSAM: Tends to over-segment into non-palm areas.
SAM 2 (Selected): Provides the most balanced and accurate segmentation.
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Visualizing What the Model "Sees" with Grad-CAM

Input Layer 1 Layer 4 Layer 7 Layer 10 Layer 16 Layer 19 Layer 22

Figure: Hierarchical Feature Learning in YOLOv10 through Grad-CAM Visualizations.

Hierarchical Feature Learning
The analysis confirms the model learns a meaningful progression: early layers focus
on low-level edges and textures; intermediate layers integrate spatial context; and deep
layers exhibit focused activation over entire palm crowns.
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Model Interpretability: A Step-by-Step Guide to Calibration

1. Initial Output

The Problem
The uncalibrated model is
unreliable; its confidence
scores are poorly correlated
with true accuracy (IoU).

2. LRP Thresholding

The First Fix
LRP-based thresholding is
first applied to prune the
large number of unreliable,
low-confidence predictions.

3. Post-Hoc Calibration

The Final Result
A post-hoc method (e.g.,
Temperature Scaling) is
then applied to align
confidence with accuracy.
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Quantitative Analysis of Counting Performance

Table: Counting performance across four distinct
ecological sites.

Site Area (ha) Counts Pred2GT GT2Pred
Ratio Median (m) Ratio Median (m)

FCAT 21.62 471 0.9361 1.10 0.8854 0.77
Jama-Coaque 111.93 952 0.9348 1.50 0.8151 1.14
Canande 101.20 1,273 0.8956 0.82 0.7667 0.72
Tesoro Escondido 86.76 2,330 0.8981 1.09 0.9253 0.91

Key Metrics:
Pred2GT Ratio (Precision): Proportion of
predictions matched to a ground truth palm.
GT2Pred Ratio (Recall): Proportion of
ground truth palms matched by a prediction.

Summary of Findings:
Precision is high across all
sites, indicating the model
generates few false positives.
Recall is more variable,
showing that detecting every
true palm is harder and
site-dependent.
Sites like Tesoro Escondido
show balanced performance,
while Canandé reveals recall
limitations (some palms are
missed).
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Background: Measuring Spatial Point Patterns

Goal
To quantify if a spatial point pattern is clustered,
random, or regular by comparing it against a
model of Complete Spatial Randomness (CSR).

Ripley’s G & F Functions
These are cumulative distribution functions
(CDFs) that measure nearest-neighbor distances
at a given distance radius d:

G(d): CDF of distances from each point to
its nearest neighbor in the pattern. It
quantifies internal clustering.
F(d): CDF of distances from random
locations to the nearest point in the pattern.
It quantifies empty space.

Formal Definitions

Function Formulation

G(d) 1
No

∑No
i=1 1(d̂i < d)

F(d) 1
Nr

∑Nr
j=1 1(d̃j < d)

J(d) 1−G(d)
1−F (d)

Here, No is the number of observed points and d̂i is the distance
from point i to its nearest neighbor. Nr is the number of random
points and d̃j is the distance from random point j to the nearest
observed point.
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Modeling Palm Distributions

Our Goal
To simulate palm spatial patterns that match observed distributions and to understand
the ecological drivers of reproduction (e.g., long-range dispersal vs. local clustering).

The Core Mechanism: A Hybrid Generative Process
The model simulates palm propagation by combining two key ecological processes,
controlled by two interpretable parameters [22]:

Global Dispersal (Poisson): With probability (1 − p), a new palm is placed
randomly, representing animal-mediated or long-range dispersal.
Local Clustering (Gaussian): With probability p, a new palm is placed near a
parent, drawn from N(xparent, 𝜎

2I), representing local seed drop.

Parameter Fitting
The optimal parameters (p∗, 𝜎∗) are found by identifying the pair that generates
simulated patterns whose spatial statistics (Ripley’s G and F functions) most closely
match those of the observed data.
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The Poisson-Gaussian Algorithm: Implementation Details

Algorithm Pseudocode
Input: Candidate params (p,𝝈) , Observed points X
Output: Optimal params (p∗, 𝜎∗ )

Initialize: dmin ←∞
Pre-compute: Observed Ripley’s stats Gobs, Fobs.
for each (p, 𝜎) in grid do

dtotal ← 0
for i = 1 to N simulations do

1. Generate simulated set X̂i via the
Poisson-Gaussian process.

2. Compute simulated stats Gsim, Fsim.
3. Calculate discrepancy di.
4. Add di to dtotal.

end for

if dtotal < dmin then
Update dmin, p∗ ← p, 𝜎∗ ← 𝜎.

end if
end for
return p∗, 𝜎∗

Discrepancy Metric
The discrepancy di for each simulation
is the integrated absolute difference
between observed and simulated
Ripley’s functions:

di =

∫
|gobs − gsim | +

∫
|fobs − fsim |

Optimization Process
A grid search is performed over the
parameter space. The pair (p∗, 𝜎∗)
that minimizes the total discrepancy
over all simulations is selected as the
optimal fit.
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Observed Spatial Patterns: Clustered or Random?

FCAT 1 FCAT 2 FCAT 3 Jama-Coaque 1 Jama-Coaque 2

Figure: Kernel Density Estimates (KDEs) of detected palm locations across five study sites,
visually suggesting non-random clustering.

The Central Research Question
The spatial arrangement of palms appears clustered, but is this pattern statistically
significant? We test the observed distributions against a null model of CSR.
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Statistical Proof: Analysis with Ripley’s Functions

FCAT 1 FCAT 2 FCAT 3 Jama-Coaque 1 Jama-Coaque 2

Figure: Ripley’s function plots for each site. The observed pattern (red curve) is compared
against the 95% confidence envelope of a CSR process (blue curve with shaded area).

Conclusion from the Analysis
The results confirm a statistically significant departure from randomness across all
sites, with Ripley’s functions revealing both dense internal clustering (G-function) and
large empty spaces (F-function). This strong, non-random aggregation justifies our
development of a more complex reproduction model.
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Simulation Results: Replicating Observed Patterns

Figure: Visual and statistical comparison for the site Jama-Coaque 1. From left to right: PRISM
prediction, model simulation, random distribution, G-, and F-function comparison.

Optimal Parameters

Fitted (p∗ , 𝜎∗ ) across sites.

Site p∗ 𝜎∗

FCAT 1 0.49 50
FCAT 2 0.52 70
FCAT 3 0.46 70

Jama-Coaque 1 0.64 80
Jama-Coaque 2 0.51 60

Key Findings
The optimal parameters are highly consistent.
This indicates a stable balance between local
clustering (within a ∼2-4 meter radius) and
random, long-range dispersal.
The strong alignment between simulated and
observed Ripley’s functions (right panels)
validates the model’s fidelity.
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Palm Detection and Distribution Conclusion

Summary of Contributions
Created PALMS, a new, large-scale annotated dataset for palm detection in
ecologically diverse tropical forests.
Developed PRISM, an end-to-end framework for efficient palm detection,
segmentation, and counting from UAV imagery.
Introduced a simple, two-parameter Poisson-Gaussian model that successfully
replicates the complex spatial dynamics of palm distribution, as validated by
Ripley’s functions.

Future Directions
Dataset Expansion: A 1000 km2 Amazonian region in Peru.
Model Enhancement: Improve the localization quality of palm centers.
Deployment & Extension: Real-time, on-device deployment (e.g., NVIDIA
Jetson) and extension to species-level classification.
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Fetal Heart Tracking in Ultrasound Videos
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The Clinical Challenge: Congenital Heart Defects (CHDs)

A Global Health Concern
CHDs affect up to 1.2% of all live births globally and are a primary cause of
neonatal mortality [23].
Early diagnosis via Fetal Echocardiography (FE) is crucial for improving
survival rates [24].

The Diagnostic Bottleneck
Accurate interpretation of FE scans requires extensive expertise.
A global scarcity of trained sonographers and cardiologists creates a significant
barrier to early diagnosis, especially in low-resource settings [25].
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Technical Challenges in Fetal Ultrasound Analysis

Data Heterogeneity and Quality
Real-world ultrasound data exhibits high variability due to different imaging machines,
software, and scanning protocols, which can compromise model generalization.

Inherent Challenges of Fetal Cardiac Imaging
The fetal heart is a small, rapidly beating organ with variable positioning and
orientation.
The heart occupies a widely varying portion of the frame (from 2.3% to 61% in
our dataset).
Videos are often screen-captured, including inconsistent graph user interfaces.

The Need for Temporal Awareness
Most prior work focuses on single frames, disregarding the rich information of the
beating heart. Our work aims to address this by explicitly modeling temporal context.

Kangning Cui (CityU) Detection and Segmentation for RS January 10, 2026 52 / 63



Our Approach: A 3D CNN for Temporal Tracking
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Figure: The modified 3D ResNet-18 architecture processes video clips to predict bounding
boxes and presence indicators.
The Model:

A modified 3D ResNet-18 architecture processes video clips (e.g., 64 frames).
Preserves temporal resolution while downsampling spatial dimensions.

The Loss Function: A hybrid loss balances multiple objectives:
Bounding box regression (MSE).
Heart presence classification (Cross-Entropy).
Temporal smoothness regularization (L2-norm).
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Dataset & Ground Truth Definition

Heart Tracking Set (Site 1)
738 scans from 401 healthy participants.
Manual bounding box annotations
reviewed by an expert fetal cardiologist.
Includes multiple standard cardiac views
(4CH, 3VV, etc.).

Anomaly Classification Set
(Site 2)

3051 scans from 432 participants.
Used to validate the downstream
benefit of our tracking model for
CHD detection.

Ground Truth Formulation:
For each frame, the ground truth gi encodes the bounding box and heart presence:

gi = (cx
i , c

y
i , r

x
i , r

y
i , y

0
i , y

1
i )

c: box center coordinates
r: box half-dimensions
y: one-hot vector for presence/absence
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Results: Fetal Heart Tracking Performance

Table: Performance comparison for fetal heart tracking. Our 3D-based method with L2
regularization shows the best overall performance.

Method Acc.↑ AP@50↑ AP@75↑ MSEcenter (×104) ↓ MSEradius (×104) ↓ mIoU↑
YOLO11 [26] 0.633 0.663 0.543 3.676±3.678 3.179±3.383 0.536±0.329
Conv2D 0.843 0.747 0.160 1.032±1.441 0.115±0.221 0.614±0.202
Conv2D+channel 0.876 0.824 0.223 0.826±1.322 0.099±0.173 0.643±0.184
Ours 0.911 0.838 0.319 0.616±1.022 0.103±0.179 0.678±0.173
Ours (w/ L2) 0.918 0.866 0.341 0.525±0.801 0.093±0.169 0.693±0.161

Key Takeaway
Explicitly modeling temporal information with a 3D architecture significantly
outperforms frame-wise detection methods like YOLOv11. Adding a temporal
smoothness regularization term (L2) further improves all performance metrics.
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Qualitative Results: Visual Tracking Comparison

Case 1

Frame 113 Frame 123 Frame 139

Frame 154 Frame 162 Frame 168

Case 2

Frame 106

Frame 223

Frame 121

Frame 256

Frame 169

Frame 235

Figure: Tracking performance on
two clinical cases. Bounding boxes:
Ground Truth (blue), YOLOv11
baseline (green), and our proposed
method (orange).

Baseline (YOLOv11)
Struggles to maintain tracking consistency.
Predictions can be unstable or missed.
High spatial accuracy on frames it does detect.

Our Method
Delivers significantly smoother and more
consistent tracking across the cardiac cycle.
Robust to variations in heart rate and motion.

Key Takeaway
The visual results highlight the critical importance
of temporal modeling for reliable tracking in
dynamic ultrasound videos.
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Performance Analysis: Tracking and Downstream Impact

Figure: Left: AUC curves for CHD detection. Right: AP curves for the tracking task.

Key Findings
Downstream Impact: Using our tracking model for preprocessing improves
CHD detection, achieving a superior AUC of 0.92 over a standard center crop.
Tracking Performance: Our 3D temporal model offers more consistent tracking
(higher AP@50), while the frame-wise YOLOv11 shows better spatial
localization when it succeeds (higher AP@75).
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Fetal Heart Tracking Conclusion

Summary of Contribution
Proposed a novel 3D deep learning method for fetal heart tracking in real-world
ultrasound videos.
The model demonstrated superior performance over strong baselines like
YOLOv11 by combining spatial and temporal information.
Showcased the method’s utility as a pre-processing module, leading to improved
accuracy in downstream CHD classification.

Future Directions
Extend the framework to support detailed motion analysis by tracking multiple
anatomical landmarks within the heart.
Validate the method across a broader, more diverse patient population in
collaboration with additional clinical institutions.
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Conclusion
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Thesis Conclusion: Summary of Contributions

A Common Theme
Across diverse domains, this thesis contributes data-efficient, interpretable, and
spatially-aware machine learning frameworks to solve challenges with limited
supervision and complex data structures.

Key Contributions
HSI Clustering: Introduced S2DL, an efficient unsupervised method combining
superpixel segmentation and diffusion geometry.
Change Detection: Applied supervised (E-ReCNN) and semi-supervised
(SVM-STV) frameworks for detecting ASGM activities in Sentinel-2 imagery.
UAV Imagery Analysis: Designed the PRISM pipeline for UAV-based palm
detection and counting, complemented by a Poisson-Gaussian model for
simulating spatial patterns.
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Thank You

Questions & Discussion

Kangning Cui
City University of Hong Kong

ckn3.github.io
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